MicroRNA-222 regulates the viability of fibroblasts in hypertrophic scars via matrix metalloproteinase 1
نویسندگان
چکیده
The present study aimed to determine the expression of microRNA (miR)-222 in hypertrophic scar (HS) tissues, and investigate the regulatory mechanism of miR-222 in HS. A total of 36 patients diagnosed with HS between August 2013 and May 2016 were included in the present study. HS tissues and HS-adjacent tissues were collected from patients. Primary fibroblasts were obtained from HS tissue. Reverse transcription-quantitative polymerase chain reaction was used to measure mRNA levels of matrix metalloproteinase 1 (MMP1) and miR-222. Western blotting was conducted to determine MMP1 expression and an MTT assay was performed to measure the viability of fibroblasts. A dual luciferase reporter assay was used to identify the binding of miR-222 to MMP1 mRNA. It was demonstrated that MMP1 serves a role in HS at the transcription level and that increased MMP1 expression inhibited the viability of fibroblasts. miR-222 serves a regulatory role in HS by targeting its target gene MMP1 and regulates the expression of MMP1 by binding to its 3'-untranslated region. The decreased expression of miR-222 suppresses the viability of fibroblasts by regulating MMP1 expression. The present study demonstrated that the downregulation of MMP1 in HS tissues is associated with the upregulation of miR-222 expression. miR-222 may therefore regulate the viability of fibroblasts in HS and the expression of related proteins via MMP1.
منابع مشابه
The Anti-Scar Effects of Basic Fibroblast Growth Factor on the Wound Repair In Vitro and In Vivo
Hypertrophic scars (HTS) and keloids are challenging problems. Their pathogenesis results from an overproduction of fibroblasts and excessive deposition of collagen. Studies suggest a possible anti-scarring effect of basic fibroblast growth factor (bFGF) during wound healing, but the precise mechanisms of bFGF are still unclear. In view of this, we investigated the therapeutic effects of bFGF o...
متن کاملHigh-mobility Group Box Protein-1, Matrix Metalloproteinases, and Vitamin D in Keloids and Hypertrophic Scars
Keloids and hypertrophic scars represent excessive wound healing involving high production of collagen by skin fibroblasts. This review focuses on the role of high-mobility group box protein-1 (HMGB-1), matrix metalloproteinases (MMPs), and vitamin D in these conditions. Although the role of HMGB-1 in keloids and hypertrophic scars is unclear, the effect of HMGB-1 on fibroblasts suggests a prof...
متن کاملNew insights into the prevention and treatment strategies for hypertrophic scars and keloids
Hypertrophic scars and keloids are fibrosis abnormalities associated with the accumulation of collagen and extra cellular matrix components. These scars are caused by abnormal wound healing, which may occur after skin injuries caused by surgery, trauma, burns, etc. and may have a large impact on the patients’ quality of life. Hypertrophic scars and colloids in addition to aesthetic problems can...
متن کاملTherapeutic Effects of Liposome-Enveloped Ligusticum chuanxiong Essential Oil on Hypertrophic Scars in the Rabbit Ear Model
Hypertrophic scarring, a common proliferative disorder of dermal fibroblasts, results from an overproduction of fibroblasts and excessive deposition of collagen. Although treatment with surgical excision or steroid hormones can modify the symptoms, numerous treatment-related complications have been described. In view of this, we investigated the therapeutic effects of essential oil (EO) from rh...
متن کاملInhibition of microRNA-21 decreases the invasiveness of fibroblast-like synoviocytes in rheumatoid arthritis via TGFβ/Smads signaling pathway
Objective(s): MicroRNA-21 (miR21) is aberrantly elevated in rheumatoid arthritis (RA) patients, the significance of this microRNA in RA pathogenesis and treatment, however, has not been investigated. In this study, by using RA-derived fibroblast-like synoviocyte (FLS) cells as a model, we investigated the effect and corresponding mechanism of miR21 inhibition on FLSs invasion. Materials and Met...
متن کامل